Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(12): e0278699, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36490265

RESUMO

INTRODUCTION: The composition of the nasal microbiota in surgical patients in the context of general anesthesia and nasal povidone-iodine decolonization is unknown. The purpose of this quality improvement study was to determine: (i) if general anesthesia is associated with changes in the nasal microbiota of surgery patients and (ii) if preoperative intranasal povidone-iodine decolonization is associated with changes in the nasal microbiota of surgery patients. MATERIALS AND METHODS: One hundred and fifty-one ambulatory patients presenting for surgery were enrolled in a quality improvement study by convenience sampling. Pre- and post-surgery nasal samples were collected from patients in the no intranasal decolonization group (control group, n = 54). Pre-decolonization nasal samples were collected from the preoperative intranasal povidone-iodine decolonization group (povidone-iodine group, n = 97). Intranasal povidone-iodine was administered immediately prior to surgery and continued for 20 minutes before patients proceeded for surgery. Post-nasal samples were then collected. General anesthesia was administered to both groups. DNA from the samples was extracted for 16S rRNA sequencing on an Illumina MiSeq. RESULTS: In the control group, there was no evidence of change in bacterial diversity between pre- and post-surgery samples. In the povidone-iodine group, nasal bacterial diversity was greater in post-surgery, relative to pre-surgery (Shannon's Diversity Index (P = 0.038), Chao's richness estimate (P = 0.02) and Inverse Simpson index (P = 0.027). Among all the genera, only the relative abundance of the genus Staphylococcus trended towards a decrease in patients after application (FDR adjusted P = 0.06). Abundant genera common to both povidone-iodine and control groups included Staphylococcus, Bradyrhizobium, Corynebacterium, Dolosigranulum, Lactobacillus, and Moraxella. CONCLUSIONS: We found general anesthesia was not associated with changes in the nasal microbiota. Povidone-iodine treatment was associated with nasal microbial diversity and decreased abundance of Staphylococcus. Future studies should examine the nasal microbiota structure and function longitudinally in surgical patients receiving intranasal povidone-iodine.


Assuntos
Anti-Infecciosos Locais , Povidona-Iodo , Humanos , Melhoria de Qualidade , RNA Ribossômico 16S/genética , Nariz/cirurgia , Nariz/microbiologia , Administração Intranasal , Staphylococcus , Bactérias/genética , Anti-Infecciosos Locais/uso terapêutico
2.
Vet Microbiol ; 269: 109428, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35427993

RESUMO

The association between changes in the respiratory microbiota and Bovine Respiratory Disease (BRD) in dairy calves is not well understood. We investigated characteristics of the nasopharyngeal (NP) microbiota associated with BRD following Pasteurella multocida infection. We also evaluated the effect of ampicillin on the respiratory microbiota. Calves (n = 30) were inoculated with P. multocida and randomly allocated into an antibiotic group (AMP; n = 17) or placebo group (PLAC; n = 11) when lung lesions developed. Deep NP swabs (DNPS) were collected before and after challenge. Monitoring was performed daily until euthanasia at day 14. Swabs and tissue samples were collected for analysis. The V4 hypervariable region of the 16 S rRNA gene was amplified and sequenced on an Illumina MiSeq. Increased species abundance in the pre-challenge DNPS was associated with a decrease in cumulative respiratory disease over 14 days post-infection. While NP beta diversity was affected by infection, antibiotic therapy showed no effect on the alpha and beta diversity nor the relative abundance (RA) of genera in the NP tonsil, lymph node and lung microbiota. Antibiotic therapy was associated with an increased RA of NP Pasteurella spp. and a decreased RA of NP Prevotella spp. Common taxa among all samples included GIT-associated bacteria, which suggests a possible link between the GIT microbiota and respiratory microbiota in dairy calves.


Assuntos
Doenças dos Bovinos , Microbiota , Pasteurella multocida , Doenças Respiratórias , Ampicilina/farmacologia , Animais , Antibacterianos/farmacologia , Bactérias/genética , Bovinos , Doenças dos Bovinos/microbiologia , Pulmão/microbiologia , Pasteurella multocida/genética , Doenças Respiratórias/veterinária
3.
Sci Rep ; 12(1): 4899, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35318361

RESUMO

Bovine fescue toxicosis (FT) is caused by grazing ergot alkaloid-producing endophyte (Epichloë coenophiala)-infected tall fescue. Endophyte's effects on the animal's microbiota and metabolism were investigated recently, but its effects in planta or on the plant-animal interactions have not been considered. We examined multi-compartment microbiota-metabolome perturbations using multi-'omics (16S and ITS2 sequencing, plus untargeted metabolomics) in Angus steers grazing non-toxic (Max-Q) or toxic (E+) tall fescue for 28 days and in E+ plants. E+ altered the plant/animal microbiota, decreasing most ruminal fungi, with mixed effects on rumen bacteria and fecal microbiota. Metabolic perturbations occurred in all matrices, with some plant-animal overlap (e.g., Vitamin B6 metabolism). Integrative interactomics revealed unique E+ network constituents. Only E+ had ruminal solids OTUs within the network and fecal fungal OTUs in E+ had unique taxa (e.g., Anaeromyces). Three E+-unique urinary metabolites that could be potential biomarkers of FT and targeted therapeutically were identified.


Assuntos
Alcaloides de Claviceps , Festuca , Lolium , Micotoxicose , Ração Animal/análise , Animais , Bovinos , Alcaloides de Claviceps/metabolismo , Alcaloides de Claviceps/toxicidade , Festuca/metabolismo , Lolium/microbiologia
4.
Front Microbiol ; 11: 1865, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849453

RESUMO

Beef cattle are key contributors to meat production and represent critical drivers of the global agricultural economy. In Brazil, beef cattle are reared in tropical pastures and finished in feedlot systems. The introduction of cattle into a feedlot includes a period where they adapt to high-concentrate diets. This adaptation period is critical to the success of incoming cattle, as they must adjust to both a new diet and environment. Incoming animals are typically reared on a variety of diets, ranging from poor quality grasses to grazing systems supplemented with concentrate feedstuffs. These disparate pre-adaptation diets present a challenge, and here, we sought to understand this process by evaluating the adaptation of Nellore calves raised on either grazing on poor quality grasses (restriction diet) or grazing systems supplemented with concentrate (concentrate diet). Given that nutrient provisioning from the diet is the sole responsibility of the ruminal microbial community, we measured the impact of this dietary shift on feeding behavior, ruminal fermentation pattern, ruminal bacterial community composition (BCC), and total tract digestibility. Six cannulated Nellore bulls were randomly assigned to two 3 × 3 Latin squares, and received a control, restriction, or concentrate diet. All cohorts were then fed the same adaptation diet to mimic a standard feedlot. Ruminal BCC was determined using Illumina-based 16S rRNA amplicon community sequencing. We found that concentrate-fed cattle had greater dry matter intake (P < 0.01) than restricted animals. Likewise, cattle fed concentrate had greater (P = 0.02) propionate concentration during the adaptation phase than control animals and a lower Shannon's diversity (P = 0.02), relative to the restricted animals. We also found that these animals had lower (P = 0.04) relative abundances of Fibrobacter succinogenes when compared to control animals during the pre-adaptation phase and lower abundances of bacteria within the Succinivibrio during the finishing phase, when compared to the control animals (P = 0.05). Finally, we found that animals previously exposed to concentrate were able to better adapt to high-concentrate diets when compared to restricted animals. Our study presents the first investigation of the impact of pre-adaptation diet on ruminal BCC and metabolism of bulls during the adaptation period. We suggest that these results may be useful for planning adaptation protocols of bulls entering the feedlot system and thereby improve animal production.

5.
Physiol Genomics ; 52(8): 333-346, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32567508

RESUMO

Development of a properly functioning gastrointestinal tract (GIT) at an early age is critical for the wellbeing and lifetime productivity of dairy cattle. The role of early microbial colonization on GIT development in neonatal cattle and the associated molecular changes remain largely unknown, particularly for the small intestine. In this study, we performed artificial dosing of exogenous rumen fluid during the early life of the calf, starting at birth through the weaning transition at 8 wk. Six calves were included in this study. At 8 wk of age, tissue from the ileum was collected and subjected to host transcriptome and microbial metatranscriptome analysis using RNA sequencing. A total of 333 genes showed significant differential expression (DE) (fold-change ≥2; adjusted P < 0.1, mean read-count ≥10) between the treated and control calves. Gene ontology analysis indicated that these DE genes are predominantly associated with processes related to the host immune response (P < 0.0001). Association analysis between the host gene expression and the microbial genus abundance identified 57 genes as having significant correlation with the ileum microbial genera (P < 0.0001). Of these, three genes showed significant association with six microbial genera: lysozyme 2 (LYZ2), fatty acid binding protein 5 (FABP5), and fucosyltransferase (FUT1). Specifically, the profound increase in expression of LYZ2 in treated calves suggests the initiation of antibacterial activity and innate response from the host. Despite the limitation of a relatively small sample size, this study sheds light on the potential impact of early introduction of microbes on the small intestine of calves.


Assuntos
Ração Animal/microbiologia , Bovinos/genética , Microbioma Gastrointestinal/genética , Interações entre Hospedeiro e Microrganismos/genética , Íleo/microbiologia , Rúmen/microbiologia , Transcriptoma , Animais , Animais Recém-Nascidos , Líquidos Corporais/microbiologia , Feminino , Ontologia Genética , Genes , Imunidade Inata/genética , Masculino , RNA Ribossômico/genética , RNA-Seq/métodos , Desmame
6.
Appl Environ Microbiol ; 86(17)2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32591382

RESUMO

Analysis of the cow microbiome, as well as host genetic influences on the establishment and colonization of the rumen microbiota, is critical for development of strategies to manipulate ruminal function toward more efficient and environmentally friendly milk production. To this end, the development and validation of noninvasive methods to sample the rumen microbiota at a large scale are required. In this study, we further optimized the analysis of buccal swab samples as a proxy for direct bacterial samples of the rumen of dairy cows. To identify an optimal time for sampling, we collected buccal swab and rumen samples at six different time points relative to animal feeding. We then evaluated several biases in these samples using a machine learning classifier (random forest) to select taxa that discriminate between buccal swab and rumen samples. Differences in the inverse Simpson's diversity, Shannon's evenness, and Bray-Curtis dissimilarities between methods were significantly less apparent when sampling was performed prior to morning feeding (P < 0.05), suggesting that this time point was optimal for representative sampling. In addition, the random forest classifier was able to accurately identify nonrumen taxa, including 10 oral and putative feed-associated taxa. Two highly prevalent (>60%) taxa in buccal and rumen samples had significant variance in relative abundances between sampling methods but could be qualitatively assessed via regular buccal swab sampling. This work not only provides new insights into the oral community of ruminants but also further validates and refines buccal swabbing as a method to assess the rumen bacterial in large herds.IMPORTANCE The gastrointestinal tracts of ruminants harbor a diverse microbial community that coevolved symbiotically with the host, influencing its nutrition, health, and performance. While the influence of environmental factors on rumen microbes is well documented, the process by which host genetics influences the establishment and colonization of the rumen microbiota still needs to be elucidated. This knowledge gap is due largely to our inability to easily sample the rumen microbiota. There are three common methods for rumen sampling but all of them present at least one disadvantage, including animal welfare, sample quality, labor, and scalability. The development and validation of noninvasive methods, such as buccal swabbing, for large-scale rumen sampling is needed to support studies that require large sample sizes to generate reliable results. The validation of buccal swabbing will also support the development of molecular tools for the early diagnosis of metabolic disorders associated with microbial changes in large herds.


Assuntos
Bovinos/microbiologia , Bochecha/microbiologia , Microbioma Gastrointestinal , Técnicas Microbiológicas/veterinária , Animais , Técnicas Microbiológicas/métodos , Rúmen/microbiologia , Amostragem
7.
Artigo em Inglês | MEDLINE | ID: mdl-32185142

RESUMO

The human gut microbiome has a great deal of interpersonal variation due to both endogenous and exogenous factors, like household pet exposure. To examine the relationship between having a pet in the home and the composition and diversity of the adult gut microbiome, we conducted a case-control study nested in a larger, statewide study, the Survey of the Health of Wisconsin. Stool samples were collected from 332 participants from unique households and analyzed using 16S rRNA sequencing on the Illumina MiSeq. One hundred and seventy-eight participants had some type of pet in the home with dogs and cats being the most prevalent. We observed no difference in alpha and beta diversity between those with and without pets, though seven OTUs were significantly more abundant in those without pets compared to those with pets, and four were significantly more abundant in those with pets. When stratifying by age, seven of these remained significant. These results suggest that pet ownership is associated with differences in the human gut microbiota. Further research is needed to better characterize the effect of pet ownership on the human gut microbiome.


Assuntos
Bactérias/classificação , Fezes/microbiologia , Microbioma Gastrointestinal , Animais de Estimação/microbiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Estudos de Casos e Controles , Gatos , DNA Bacteriano , Cães , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , RNA Ribossômico 16S , Adulto Jovem
8.
Sci Rep ; 10(1): 2497, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-32051515

RESUMO

Impaired thermoregulation and lowered average daily gains (ADG) result when livestock graze toxic endophyte (Epichloë coenophialum)-infected tall fescue (E+) and are hallmark signs of fescue toxicosis (FT), a disease exacerbated by increased temperature and humidity (+temperature-humidity index; +THI). We previously reported FT is associated with metabolic and microbiota perturbations under thermoneutral conditions; here, we assessed the influence of E+ grazing and +THI on the microbiota:metabolome interactions. Using high-resolution metabolomics and 16S rRNA gene sequencing, plasma/urine metabolomes and the fecal microbiota of Angus steers grazing non-toxic or E+ tall fescue were evaluated in the context of +THI. E+ grazing affected the fecal microbiota profile; +THI conditions modulated the microbiota only in E+ steers. E+ also perturbed many metabolic pathways, namely amino acid and inflammation-related metabolism; +THI affected these pathways only in E+ steers. Integrative analyses revealed the E+ microbiota correlated and co-varied with the metabolomes in a THI-dependent manner. Operational taxonomic units in the families Peptococcaceae, Clostridiaceae, and Ruminococcaceae correlated with production parameters (e.g., ADG) and with multiple plasma/urine metabolic features, providing putative FT biomarkers and/or targets for the development of FT therapeutics. Overall, this study suggests that E+ grazing increases Angus steer susceptibility to +THI, and offers possible targets for FT interventions.


Assuntos
Doenças dos Bovinos/microbiologia , Meio Ambiente , Epichloe/patogenicidade , Microbioma Gastrointestinal , Metaboloma , Micotoxicose/veterinária , Animais , Bovinos , Doenças dos Bovinos/sangue , Doenças dos Bovinos/urina , Fezes/microbiologia , Herbivoria , Lolium/microbiologia , Micotoxicose/sangue , Micotoxicose/microbiologia , Micotoxicose/urina
9.
Environ Int ; 133(Pt A): 105122, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31518933

RESUMO

BACKGROUND: Lead (Pb) is a ubiquitous environmental contaminant with an array of detrimental health effects in children and adults, including neurological and immune dysfunction. Emerging evidence suggests that Pb exposure may alter the composition of the gut microbiota, however few studies have examined this association in human populations. The purpose of this study was to examine the association between urinary Pb concentration and the composition of the adult gut microbiota in a population-based sample of adults. METHODS: Data used in this study were collected as part of the Survey of the Health of Wisconsin (SHOW) and its ancillary microbiome study. The SHOW is a household-based health examination survey of Wisconsin residents, collecting a variety of survey data on health determinants and outcomes, as well as objective measurements of body habitus, and biological specimens including urine. The ancillary microbiome study added additional questions and biological specimen collection, including stool, from participants age 18+. Pb concentration was analyzed in urine samples, and gut microbiota composition was assessed using DNA sequencing of the 16S rRNA V4 region, extracted from stool samples. Data processing and statistical analyses were performed in mothur, Python, R, and SAS. RESULTS: Of 696 participants, urinary Pb concentration was highest in those age 70+, females, those with a high school diploma or lower, current and former smokers, and those without indoor pets. In adjusted models, increasing urinary Pb levels were associated with increases in microbial α-diversity (p = 0.071) and richness (p = 0.005). Differences in microbial ß-diversity were significantly associated (p = 0.003) with differences in urinary Pb level. Presence of Proteobacteria, including members of the Burkholderiales, was significantly associated with increased urinary Pb. CONCLUSION: These results suggest that Pb exposure is associated with differences in the composition of the adult gut microbiota in a population-based human sample. Further investigation of this association is warranted.


Assuntos
Microbioma Gastrointestinal , Chumbo/urina , Adolescente , Adulto , Idoso , Estudos Transversais , Fezes/microbiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , RNA Bacteriano , RNA Ribossômico 16S , Wisconsin , Adulto Jovem
10.
J Anim Sci Biotechnol ; 10: 66, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31452880

RESUMO

Dairy cows rely on a complex ruminal microbiota to digest their host-indigestible feed. Our ability to characterize this microbiota has advanced significantly due to developments in next-generation sequencing. However, efforts to sample the rumen, which typically involves removing digesta directly from the rumen via a cannula, intubation, or rumenocentesis, is costly and labor intensive. As a result, the majority of studies characterizing the rumen microbiota are conducted on samples collected at a single time point. Currently, it is unknown whether there is significant day-to-day variation in the rumen microbiota, a factor that could strongly influence conclusion drawn from studies that sample at a single time point. To address this, we examined day-to-day changes in the ruminal microbiota of lactating dairy cows using next-generation sequencing to determine if single-day sampling is representative of sampling across 3 consecutive days. We sequenced single-day solid and liquid fractions of ruminal digesta collected over 3 consecutive days from 12 cannulated dairy cows during the early, middle, and late stages of a single lactation cycle using the V4 region of the bacterial 16S rRNA gene. We then generated 97% similarity operational taxonomic units (OTUs) from these sequences and showed that any of the individual samples from a given 3-day sampling period is equivalent to the mean OTUs determined from the combined 3-d data set. This finding was consistent for both solid and liquid fractions of the rumen, and we thus conclude that there is limited day-to-day variability in the rumen microbiota.

11.
12.
Appl Environ Microbiol ; 85(15)2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31126949

RESUMO

Tall fescue, the predominant southeastern United States cool-season forage grass, frequently becomes infected with an ergot alkaloid-producing toxic endophyte, Epichloë coenophialum Consumption of endophyte-infected fescue results in fescue toxicosis (FT), a condition that lowers beef cow productivity. Limited data on the influence of ergot alkaloids on rumen fermentation profiles or ruminal bacteria that could degrade the ergot alkaloids are available, but how FT influences the grazing bovine fecal microbiota or what role fecal microbiota might play in FT etiology and associated production losses has yet to be investigated. Here, we used 16S rRNA gene sequencing of fecal samples from weaned Angus steers grazing toxic endophyte-infected (E+; n = 6) or nontoxic (Max-Q; n = 6) tall fescue before and 1, 2, 14, and 28 days after pasture assignment. Bacteria in the Firmicutes and Bacteroidetes phyla comprised 90% of the Max-Q and E+ steer fecal microbiota throughout the trial. Early decreases in the Erysipelotrichaceae family and delayed increases of the Ruminococcaceae and Lachnospiraceae families were among the major effects of E+ grazing. E+ also increased abundances within the Planctomycetes, Chloroflexi, and Proteobacteria phyla and the Clostridiaceae family. Multiple operational taxonomic units classified as Ruminococcaceae and Lachnospiraceae were correlated negatively with weight gains (lower in E+) and positively with respiration rates (increased by E+). These data provide insights into how E+ grazing alters the Angus steer microbiota and the relationship of fecal microbiota dynamics with FT.IMPORTANCE Consumption of E+ tall fescue has an estimated annual $1 billion negative impact on the U.S. beef industry, with one driver of these costs being lowered weight gains. As global agricultural demand continues to grow, mitigating production losses resulting from grazing the predominant southeastern United States forage grass is of great value. Our investigation of the effects of E+ grazing on the fecal microbiota furthers our understanding of bovine fescue toxicosis in a real-world grazing production setting and provides a starting point for identifying easy-to-access fecal bacteria that could serve as potential biomarkers of animal productivity and/or FT severity for tall fescue-grazing livestock.


Assuntos
Ração Animal/microbiologia , Bovinos/microbiologia , Endófitos/química , Fezes/microbiologia , Microbiota/fisiologia , Animais , Bactérias/classificação , Bactérias/isolamento & purificação , Fenômenos Fisiológicos Bacterianos , Dieta/veterinária , Epichloe/química , Festuca/microbiologia , Masculino , RNA Bacteriano/análise , RNA Ribossômico 16S/análise
13.
mSphere ; 4(3)2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31043518

RESUMO

Laryngotracheal stenosis is an obstructive respiratory disease that leads to voicing difficulties and dyspnea with potential life-threatening consequences. The majority of incidences are due to iatrogenic etiology from endotracheal tube intubation; however, airway scarring also has idiopathic causes. While recent evidence suggests a microbial contribution to mucosal inflammation, the microbiota associated with different types of stenosis has not been characterized. High-throughput sequencing of the V4 region of the16S rRNA gene was performed to characterize the microbial communities of 61 swab samples from 17 iatrogenic and 10 adult idiopathic stenosis patients. Nonscar swabs from stenosis patients were internal controls, and eight swabs from four patients without stenosis represented external controls. Significant differences in diversity were observed between scar and nonscar samples and among sample sites, with decreased diversity detected in scar samples and the glottis region. Permutational analysis of variance (PERMANOVA) results revealed significant differences in community composition for scar versus nonscar samples, etiology type, sample site, groups (iatrogenic, idiopathic, and internal and external controls), and individual patients. Pairwise Spearman's correlation revealed a strong inverse correlation between Prevotella and Streptococcus among all samples. Finally, bacteria in the family Moraxellaceae were found to be distinctly associated with idiopathic stenosis samples in comparison with external controls. Our findings suggest that specific microbiota and community shifts are present with laryngotracheal stenosis in adults, with members of the family Moraxellaceae, including the known pathogens Moraxella and Acinetobacter, identified in idiopathic scar. Further work is warranted to elucidate the contributing role of bacteria on the pathogenesis of laryngotracheal stenosis.IMPORTANCE The laryngotracheal region resides at the intersection between the heavily studied nasal cavity and lungs; however, examination of the microbiome in chronic inflammatory conditions of the subglottis and trachea remains scarce. To date, studies have focused on the microbiota of the vocal folds, or the glottis, for laryngeal carcinoma, as well as healthy larynges, benign vocal fold lesions, and larynges exposed to smoking and refluxate. In this study, we seek to examine the structure and composition of the microbial community in adult laryngotracheal stenosis of various etiologies. Due to the heterogeneity among the underlying pathogenesis mechanisms and clinical outcomes seen in laryngotracheal stenosis disease, we hypothesized that different microbial profiles will be detected among various stenosis etiology types. Understanding differences in the microbiota for subglottic stenosis subtypes may shed light upon etiology-specific biomarker identification and offer novel insights into management approaches for this debilitating disease.


Assuntos
Bactérias/classificação , Laringoestenose/microbiologia , Microbiota , Traqueia/microbiologia , Estenose Traqueal/microbiologia , Acinetobacter/genética , Acinetobacter/isolamento & purificação , Adolescente , Adulto , Idoso , Bactérias/isolamento & purificação , Cicatriz/microbiologia , Constrição Patológica , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Laringoestenose/patologia , Masculino , Pessoa de Meia-Idade , Moraxellaceae/genética , Moraxellaceae/isolamento & purificação , Traqueia/patologia , Estenose Traqueal/patologia
14.
Sci Rep ; 9(1): 790, 2019 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-30692556

RESUMO

In mammals, microbial colonization of the digestive tract (GIT) occurs right after birth by several bacterial phyla. Numerous human and mouse studies have reported the importance of early gut microbial inhabitants on host health. However, few attempts have been undertaken to directly interrogate the role of early gut/rumen microbial colonization on GIT development or host health in neonatal ruminants through artificial manipulation of the rumen microbiome. Thus, the molecular changes associated with bacterial colonization are largely unknown in cattle. In this study, we dosed young calves with exogenous rumen fluid obtained from an adult donor cow, starting at birth, and repeated every other week until six weeks of age. Eight Holstein bull calves were included in this study and were separated into two groups of four: the first group was treated with rumen content freshly extracted from an adult cow, and the second group was treated with sterilized rumen content. Using whole-transcriptome RNA-sequencing, we investigated the transcriptional changes in the host liver, which is a major metabolic organ and vital to the calf's growth performance. Additionally, the comparison of rumen epimural microbial communities between the treatment groups was performed using the rRNA reads generated by sequencing. Liver transcriptome changes were enriched with genes involved in cell signaling and protein phosphorylation. Specifically, up-regulation of SGPL1 suggests a potential increase in the metabolism of sphingolipids, an essential molecular signal for bacterial survival in digestive tracts. Notably, eight genera, belonging to four phyla, had significant increases in abundance in treated calves. Our study provides insight into host liver transcriptome changes associated with early colonization of the microbial communities in neonatal calves. Such knowledge provides a foundation for future probiotics-based research in microbial organism mediated rumen development and nutrition in ruminants.


Assuntos
Aldeído Liases/genética , Bactérias/classificação , Perfilação da Expressão Gênica/métodos , Fígado/química , Metagenômica/métodos , Rúmen/microbiologia , Ração Animal/análise , Animais , Bactérias/genética , Bovinos , Fígado/microbiologia , Filogenia , RNA Bacteriano/genética , RNA Ribossômico/genética , Rúmen/química , Análise de Sequência de RNA , Regulação para Cima , Sequenciamento Completo do Genoma
15.
Front Vet Sci ; 5: 247, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30356776

RESUMO

The objective of this longitudinal cohort study was to describe the milk microbiota of dairy cow mammary glands based on inflammation status before and after the dry period. Individual mammary quarters were assigned to cohorts based on culture results and somatic cell count (SCC) at dryoff and twice in the first 2 weeks post-calving. Mammary glands that were microbiologically negative and had low SCC (< 100,000 cells/mL) at all 3 sampling periods were classified as Healthy (n = 80). Microbiologically negative mammary glands that had SCC ≥150,000 cells/mL at dryoff and the first post-calving sample were classified as Chronic Culture-Negative Inflammation (CHRON; n = 17). Quarters that did not have both culture-negative milk and SCC ≥ 150,000 cells/mL at dryoff but were culture-negative with SCC ≥ 150,000 at both post-calving sampling periods were classified as Culture-Negative New Inflammation (NEWINF; n = 6). Mammary glands with bacterial growth and SCC ≥ 150,000 cells/mL at all 3 periods were classified as Positive (POS; n = 3). Milk samples were collected from all enrolled quarters until 150 days in milk and subjected to microbiota analysis. Milk samples underwent total DNA extraction, a 40-cycle PCR to amplify the V4 region of the bacterial 16S rRNA gene, and next-generation sequencing. Healthy quarters had the lowest rate of PCR and sequencing success (53, 67, 83, and 67% for Healthy, CHRON, NEWINF, and POS, respectively). Chao richness was greatest in milk collected from Healthy quarters and Shannon diversity was greater in milk from Healthy and CHRON quarters than in milk collected from glands in the NEWINF or POS cohorts. Regardless of cohort, season was associated with both richness and diversity, but stage of lactation was not. The most prevalent OTUs included typical gut- and skin-associated bacteria such as those in the phylum Bacteroidetes and the genera Enhydrobacter and Corynebacterium. The increased sequencing success in quarters with worse health outcomes, combined with the lack of bacterial growth in most samples and the high PCR cycle number required for amplification of bacterial DNA, suggests that the milk microbiota of culture-negative, healthy mammary glands is less abundant than that of culture-negative glands with a history of inflammation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...